Advanced Kinetic-Based Modeling Applied to Plasma and Neutral Flows

Briefers: Andrew Ketsdever

Sergey Gimelshein

Pls: Andrew Ketsdever

Jean-Luc Cambier

Team: Brackbill, Cambier,

Gimelshein, Ketsdever

Air Force Research Laboratory

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE SEP 2012		2. REPORT TYPE		3. DATES COVERED 00-00-2012 to 00-00-2012	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Advanced Kinetic-Based Modeling Applied to Plasma and Neutral Flows				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory, Wright Patterson AFB, OH, 45433				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited					
13. SUPPLEMENTARY NOTES Presented at the 2012 AFOSR Space Propulsion and Power Program Review held 10-13 September in Arlington, VA.					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 10	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

FRC thrusters: features and challenges

What is an FRC?
Derived from fusion technology

- Efficient plasma formation
- Gas independent (Air, Ar, Xe, Ne)

Cylindrical coil surrounding insulated discharge chamber

High speed transient B field generates azimuthal E field

Neutral gas injected into discharge chamber ionizes

Plasma is supersonically accelerated inward creating compression and heating (further ionization)

Toroidal plasma confinement

Plasma induces current which generates a magnetic field in opposite direction of applied field

Extreme pressure tends to drive plasma out of discharge chamber

Difficulties in modeling FRCs

High density, MHD plasma

High temperature, Te $\sim 10 - 1000 \text{ eV}$

Non-equilibrium

Chemical (Air) / Ionization mechanisms

Neutral gas entrainment

FRC schematics

MSNW FRC thruster

FRC Neutral Entrainment: Reaction Rates

Included: electron impact ionization, single charge exchange, recombination

- Nitrogen: air breathing potential
- Recombination rate (dissociative recombination is included) dominates at T< 5eV
- EII dominates at T>5eV
- May create problems for entrainment

- Neon: high ionization energy
- Recombination (not shown) is not important
- SCX rate higher than EII, thus efficiency may be high
- Selected for further study

Adiabatic Relaxation of Ne Plasma

Species temperature

- Energy of relative motion is converted into thermal, and Tof heavy species increases
- Thermal relaxation of electrons on neutrals and ions is fairly slow
- Change in T_e is primarily related to the electron impact ionization reactions
- Impact of U on electron temperature becomes visible only after 100µs
- For any U and T, there is a strong thermalFurther increase slowed by the depletion non-equilibrium

Ion number density

- n_i weakly depends on U
- Electron T is very important
- Number of charge exchange reactions for T=10eV and U=20km/s was found to linearly increase with neutral density
- The dependence of the number of ionization reactions on neutral density is weaker than linear
- of high energy electrons

Kinetic Modeling of Neutral Entrainment in FRC thrusters

Goal: develop a computational capability capable of accurate modeling of FRC neutral entrainment at kinetic level

- Celeste3D developed by J. Brackbill at Los Alamos selected as the main production and development tool: 3D PIC that solves the full set of Boltzmann-Vlasov eqns
- Benefits: kinetic (PIC based and thus amenable to DSMC-like neutral addition),
 implicit (large time steps allow modeling of neutral entrainment), full 3D
- Physical challenges: plasmoid formation & translation, neutral capability addition, open boundary conditions, many physical and chemical processes
- Numerical challenges: multi-processor domain decomposition parallelization, adding flexible initial conditions and non-rectangular geometries

Progress:

Neutral entrainment modules
Arbitrary initial condition capability
Plasmoid / neutral interaction
Open boundary conditions

Modified Celeste3D

- Extended to include neutral transport and collisional relaxation
- Particle-based kinetic capability includes the following collisional processes:
 - neutral-neutral collisions (VHS model)
 - charge exchange reactions (Losev's cross sections)
 - neutral-ion elastic collisions (according to Losev)
 - the electron impact ionization (SIGLO)
- Hard sphere after-collision scattering is assumed for all these processes, with the exception of charge exchange reactions, for which the velocities of neutrals and ions are swapped
- Species weighting scheme is implemented
- Majorant collision frequency scheme in spatial cells
- Coulomb collision module has been added to Celeste, based on a particle-weights scheme of Nanbu

5eV Plasmoid Evolution

Neutral density

- At 16µs, neutrals loss near the centerline amounts to about 30%
- Loss of neutrals = gain in ions

Ion density

- 8ms: impact of neutrals is negligible
- 12ms: moderate, on the order of 5%, increase in plasma density in the center
- 16ms: plasma density in the center decreases due to mass transfer
- Significant elongation of the plasmoid

10eV Plasmoid Evolution

- Baseline: modest(~5%) increase in n_i
- Clear translation of the plasmoid
- Average velocity of initially stationary plasmoid is about 3km/s
- U=30km/s: weaker interaction (short t)
- Larger n: p transfer, ionization triple

- Neutral density decreases by ~50% for the baseline and ~30% for U=30km/s
- Since change in n_i is < change in n_n, the latter is related to charge exchange
- Neutrals loose X momentum after charge exchange, and do not reach right boundary

Summary

- First step toward accurate modeling of FRC thruster with neutral entrainment
- Comparison of ionization and charge exchange reaction rates indicates that the use of nitrogen and especially xenon may be problematic, while neon appears to be a fairly good propellant
- Adiabatic heat bath:
 - showed that FRC entrainment proceeds under conditions of strong thermal and chemical nonequilibrium; ion, electron, and neutral temperatures strongly differ, and the electron distribution function is non-Maxwellian
 - Strong impact of electron temperature on plasma density due to ionization
 - Modeling of Coulomb collisions between electrons is desirable to properly account for electron high velocity tail depletion

2D modeling:

- Implicit PIC code Celeste3D extended to include neutral transport, plasma-neutral and neutral-neutral collisions and Coulomb collisions
- For 5eV and 10eV, strong entrainment of neutral particles by a translated plasmoid is observed as a result of charge exchange reactions between slow neutrals and fast moving ions
- Modest increase in plasma density due to electron impact ionization
- Increase in neutral density appears highly beneficial for thruster efficiency

FY12 Publications and Outlook

- 7 journal articles (Physics of Fluids, Applied Physics Letters, Optics Express, International Journal of Computational Fluid Dynamics, Vacuum, Journal of Applied Physics, Journal of Chemical Physics)
- About 15 refereed conference presentations/papers (AIAA conferences and RGD Symposium)
- Future directions in kinetic modeling of FRC thrusters:
 - Electronic excitation
 - Air breathing
 - 3D and annular configurations
 - RMF, plasmoid formation
 - Parallelization